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Abstract: Primary sclerosing cholangitis (PSC) and Primary biliary cholangitis (PBC) are chronic
inflammatory biliary diseases characterized by progressive damage of the bile ducts, resulting in
hepatobiliary fibrosis and cirrhosis. Currently, specific biomarkers that allow to distinguish between
PSC and PBC do not exist. In this study, we examined the salivary proteome by carrying out a
comprehensive and non-invasive screening aimed at highlighting possible quali-quantitative protein
deregulations that could be the starting point for the identification of effective biomarkers in future.
Saliva samples collected from 6 PBC patients were analyzed using a liquid chromatography–tandem
mass spectrometry technique, and the results were compared with those previously obtained in
the PSC group. We identified 40 proteins as significantly deregulated in PSC patients compared to
the PBC group. The Gene Ontology and pathway analyses highlighted that several proteins (e.g.,
small integral membrane protein 22, cofilin-1, macrophage-capping protein, plastin-2, and biliverdin
reductase A) were linked to innate immune responses and actin cytoskeleton remodeling, which
is a critical event in liver fibrosis and cancer progression. These findings provide new foundations
for a deeper understanding of the pathophysiology of PSC and demonstrate that saliva is a suitable
biological sample for obtaining proteomic fingerprints useful in the search for biomarkers capable of
discriminating between the two cholestatic diseases.

Keywords: primary sclerosing cholangitis; primary biliary cholangitis; saliva; proteomics;
LC-MS/MS; cytoskeleton

1. Introduction

Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic
liver diseases characterized by inflammation and progressive damage of the bile ducts,
resulting in hepatobiliary fibrosis and cirrhosis. PSC is a rare disease more frequent in
men than in women (ratio 2:1) and shows a peak incidence around 40 years [1]. On the
other hand, PBC predominantly affects women (ratio 1:9) with a peak range between 60
and 79 years [2]. These cholestatic diseases share multiple clinical (e.g., fatigue, pruritus,
and jaundice) and biochemical features (elevated levels of alkaline phosphatase (ALP) and
gamma-glutamyl transferase (GGT)), making differential diagnosis a challenge [3]. Histo-
logical examinations can provide additional information, showing the typical ‘onion skin’
lesions in PSC [4], while PBC displays lymphocytic infiltrates and granulomas surrounding
the small bile ducts [5]. However, liver biopsies are very invasive and risky, therefore
they are unattractive diagnostic tools in clinical routine. Thus, reliable and non-invasive
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biomarkers that can accurately distinguish between PSC and PBC, or can assess disease
activity and prognosis, represent an urgency for patients and a challenge for researchers
and clinicians.

Recent advances in proteomics mass spectrometry (MS)-based analyses are promising
in this area, as they can provide a comprehensive profile of the protein content within
biological samples such as serum, bile, or saliva, showing the alterations in protein expres-
sion that accompany a particular disease [6]. This approach has occasionally been applied
in PSC and PBC patients to identify discriminatory proteins towards healthy individuals
and patients with liver and/or biliary tumors or autoimmune liver disease. For instance,
bile, serum, and urine MS-based proteomics were investigated to discriminate PSC from
cholangiocarcinoma (CCA) and benign biliary disorders [7–10] or to identify proteins with
potential prognostic value [11]. MS techniques were also applied to identify serum pro-
teins able to discriminate PBC patients from healthy subjects [12] or autoimmune hepatitis
patients [13]. Over the last 10 years, human saliva has been investigated for diagnostic
purposes because it reflects the general health status of an individual [14,15]. Many studies
have shown that saliva is a useful biofluid for detecting oral diseases [16,17] and also
systemic conditions, including heart disease [18,19], diabetes [20], and several types of
cancer [21–24]. In the hepatic field, some evidence suggested that liver function parameters
can be assessed in saliva [25] and proposed several metabolites to discriminate between
healthy individuals and patients with liver cirrhosis or hepatocellular carcinoma [26]. Inter-
estingly, salivary proteomics investigations were carried out to identify salivary protein
differences between subjects affected by PBC and autoimmune hepatitis [27,28], and be-
tween PSC patients and healthy individuals [29]. In this scenario, our study is the first to
have conducted a comparative salivary proteomic analysis between subjects with PSC and
PBC, providing new foundations for a deeper understanding of the PSC pathophysiology,
and therefore it might have relevant implications for improving diagnosis, prognosis, and
treatment strategies.

2. Results
2.1. Salivary Proteomics of PSC Patients

Saliva samples from PSC patients and healthy controls were compared, and, 142 proteins
passed the requirement of having a Mann–Whitney p-value of less than 0.05 and log2FC
≤ 0.58 or log2FC ≥ 0.58 [29]. Among them, the expression levels of 40 proteins were also
deregulated in PSC patients in respect to those in the PBC group (Figures 1 and S1). As
reported in Figure 1a, 38 proteins were up-regulated in PSC patients compared to both
healthy individuals and PBC patients, and 2 proteins were down-regulated (Figure 1b)
in PSC patients compared to both healthy and PBC subjects. In Table 1, we listed these
proteins, and for each one, the log2FC and the p-value were reported. The protein with
the highest FC was small integral membrane protein 22 (log2FC = 3.589). Multiple other
proteins also displayed significant positive change in expression between the two groups,
such as biliverdin reductase A (log2FC = 3.117), F-box only protein 50 (log2FC = 2.814), and
glycogenin-1 (log2FC = 2.609). In addition, in the PSC group we detected a reduction in
expression level for prosaposin and immunoglobulin lambda variable 3–10 when compared
with those determined in PBC patients, with a log2FC of −0.779 and −0.615, respectively.
In addition, 102 proteins showed significant change in their abundance in PSC subjects
compared to healthy controls, but no change was identified with respect to the PBC group
(Figure 1). In particular, we identified 7 down-regulated and 95 up-regulated proteins that
are listed in Table S1. In Table 2, we listed the 7 down-regulated and the top 20 out of
95 up-regulated DEPs in PSC subjects compared to healthy controls, which showed no
significant change compared to the PBC group, and for each one the log2FC and the p-value
were reported. Among the down-regulated proteins, the serum amyloid P-component ex-
hibited the lower FC (log2FC = −1.079), followed by Mucin-5B (log2FC = −0.980), Mucin-16
(log2FC = −0.936), Cystatin-A (log2FC = −0.812), Zinc-alpha-2-glycoprotein
(log2FC = −0.781), WAP four-disulfide core domain protein 2 (log2FC = −0.700), and
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Immunoglobulin kappa constant (log2FC = −0.584). On the other hand, the protein that
displayed the highest FC was Kallikrein-6 (log2FC = 5.136). Several other proteins also dis-
played up-regulation in the PSC group without significant change if compared to the PBC
subjects, such as Protein S100-A7 (log2FC = 2.793), Aldo-keto reductase family 1 member
B10 (log2FC = 2.513), Complement factor I (log2FC = 2.309), Low-affinity immunoglobu-
lin gamma Fc region receptor III-A (log2FC = 2.231), and Osteoclast-stimulating factor 1
(log2FC = 2.218).
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Figure 1. Venn diagrams showing the number of up-regulated (a) and down-regulated (b) proteins
in PSC patients compared to both healthy subjects and PBC patients. Each colored circle represents
a different dataset, and areas of overlap indicate shared proteins. The cutoff criteria for statistical
significance were defined based on log2FC ≤ 0.58 or log2FC ≥ 0.58, and p-value < 0.05.

Table 1. List of 40 DEPs in PSC patients compared to both healthy and PBC subjects, which passed
the cutoff log2FC ≤ 0.58 or log2FC ≥ 0.58 FC, and a Mann–Whitney p-value < 0.05.

Protein ID Protein Name log2FC(PSCvsPBC) p-Value

DOWN-REGULATED PROTEINS

P07602 Prosaposin −0.779 0.006
A0A075B6K4 Immunoglobulin lambda variable 3–10 −0.615 0.004
UP-REGULATED PROTEINS

K7EJ46 Small integral membrane protein 22 3.589 0.002
P53004 Biliverdin reductase A 3.117 0.0001
Q6ZVX7 F-box only protein 50 2.814 0.006
P46976 Glycogenin-1 2.609 0.001
O15511 Actin-related protein 2/3 complex subunit 5 2.370 0.017
P47929 Galectin-7 2.267 0.0001
O75367 Core histone macro-H2A.1 2.225 0.015
P60842 Eukaryotic initiation factor 4A-I 2.096 0.013
P49327 Fatty acid synthase 2.058 0.011
P40121 Macrophage-capping protein 1.995 0.001
P29350 Tyrosine-protein phosphatase non-receptor type 6 1.968 0.008
P49368 T-complex protein 1 subunit gamma 1.714 0.002
P23526 Adenosylhomocysteinase 1.543 0.005
Q96BQ1 Protein FAM3D 1.503 0.005
P19823 Inter-alpha-trypsin inhibitor heavy chain H2 1.464 0.015
P23528 Cofilin-1 1.413 0.001
Q08431 Lactadherin 1.358 0.016
P14550 Aldo-keto reductase family 1 member A1 1.309 0.021
P13639 Elongation factor 2 1.195 0.0002
O75874 Isocitrate dehydrogenase [NADP] cytoplasmic 1.190 0.042
P53396 ATP-citrate synthase 1.183 0.041
P51159 Ras-related protein Rab-27A 1.159 0.014
P07900 Heat shock protein HSP 90-alpha 1.140 0.013
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Table 1. Cont.

Protein ID Protein Name log2FC(PSCvsPBC) p-Value

P17900 Ganglioside GM2 activator 1.120 0.042
P09211 Glutathione S-transferase P 1.102 0.009
P16152 Carbonyl reductase [NADPH] 1 1.051 0.039
Q15080 Neutrophil cytosol factor 4 1.012 0.045
Q9UKR3 Kallikrein-13 0.996 0.032
Q13404 Ubiquitin-conjugating enzyme E2 variant 1 0.960 0.0120
P18206 Vinculin 0.953 0.038
P09960 Leukotriene A-4 hydrolase 0.892 0.043
Q92743 Serine protease HTRA1 0.840 0.033
P08238 Heat shock protein HSP 90-beta 0.825 0.020
P51149 Ras-related protein Rab-7a 0.807 0.003
P13489 Ribonuclease inhibitor 0.798 0.021
P13796 Plastin-2 0.716 0.045
P43490 Nicotinamide phosphoribosyltransferase 0.654 0.021

P52209 6-phosphogluconate dehydrogenase,
decarboxylating 0.625 0.004

Table 2. List of the 7 down-regulated and the top 20 out of 95 up-regulated DEPs identified in PSC
subjects compared to healthy controls, which showed no significant change compared to the PBC
group. For each protein, the cutoff of log2FC ≤ 0.58 or log2FC ≥ 0.58, and a Mann–Whitney p-value
< 0.05 were applied.

Protein ID Protein Name log2FC(PSCvsControl) p-Value

DOWN-REGULATED PROTEINS

P02743 Serum amyloid P-component −1.079 0.013
Q9HC84 Mucin-5B −0.980 0.0002
Q8WXI7 Mucin-16 −0.936 0.031
P01040 Cystatin-A −0.812 0.034
P25311 Zinc-alpha-2-glycoprotein −0.781 0.021
Q14508 WAP four-disulfide core domain protein 2 −0.700 0.037
P01834 Immunoglobulin kappa constant −0.584 0.048
UP-REGULATED PROTEINS

Q92876 Kallikrein-6 5.136 0.006
P31151 Protein S100-A7 2.793 0.003
O60218 Aldo-keto reductase family 1 member B10 2.513 0.048
P05156 Complement factor I 2.309 0.017

P08637 Low affinity immunoglobulin gamma Fc region
receptor III-A 2.231 0.012

Q92882 Osteoclast-stimulating factor 1 2.218 0.009
P19878 Neutrophil cytosol factor 2 2.096 0.005
O75923 Dysferlin 2.018 0.006
Q96QK1 Vacuolar protein sorting-associated protein 35 1.916 0.01

Q14002 Carcinoembryonic antigen-related cell adhesion
molecule 7 1.897 0.045

Q13393 Phospholipase D1 1.865 0.001
P53618 Coatomer subunit beta 1.822 0.02
Q9BQR3 Serine protease 27 1.771 0.015
Q92839 Hyaluronan synthase 1 1.757 0.023
P30101 Protein disulfide-isomerase A3 1.683 0.001
Q6JEL2 Kelch-like protein 10 1.678 0.018
O43240 Kallikrein-10 1.603 0.002
Q8N6Q3 CD177 antigen 1.548 0.006
Q9Y2X7 ARF GTPase-activating protein GIT1 1.507 0.001
Q14974 Importin subunit beta-1 1.503 0.015
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All the 40 identified DEPs were subjected to Principal Component Analysis (PCA),
and the reduced dataset was used to investigate the usability of these proteins as more
specific for PSC status (Figure 2). The first two principal components (PC1 and PC2) explain
38.4% and 17.1% of the data variance, respectively. Among the two components, the first
one contains the highest percentage of variance between the data, and itis of interest in
discriminating between the two groups of patients.
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Figure 2. PCA scores plot with 95% confidence ellipse of the first two principal components (PC)
obtained by the analysis of proteins significantly different in abundance (p < 0.05) between PSC
patients (blue triangles) and PBC patients (red circles). For each protein, the contribution in the
calculation of the variability of the first two principal components is expressed as a percentage.

2.2. Gene Ontology Enrichment and Pathway Analysis

To obtain more biological insights, the GO enrichment analysis was performed using
the clusterProfiler V.4.8.3 R package. Firstly, GO analysis was performed on the proteins
listed in Table 1 to identify the changes in the BPs more tightly modulated by the PSC.
As shown in Table 3 and Figure 3, the BPs were primarily enriched in biosynthetic and
metabolic processes involving carboxylic acid, eicosanoids, fatty acids, and pyridine nu-
cleotides. In addition, processes related to the organization of actin filaments, platelet
formation, and the reactive oxygen species metabolic process also emerged. For deeper
investigation, a pathway analysis was performed using g:Profiler, discovering significant
enriched terms related to the innate immune responses and neutrophils degranulation
(Figure 4). This analysis also highlighted two terms not statistically significant but bio-
logically relevant, identified as metabolic reprogramming in colon cancer and glutathione
metabolism. PSC and PBC are both chronic liver diseases involving bile ducts, sharing
several overlapping clinical and serological features, though they are distinct pathologies.
In order to highlight possible biological processes common to both diseases, a GO analy-
sis was conducted on Table S1 proteins, which are deregulated in the PSC compared to
the control group but not significantly different in expression compared to subjects with
PBC. As shown in Table 4, GO enrichment analysis revealed that the protein-related BPs
were markedly concentrated in inflammatory responses, phagocytosis, and cellular redox
homeostasis (GO:0072593, GO:1990748, GO:0042744).
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Table 3. GO enrichment analysis of the DEPs identified in PSC patients compared to both healthy
control and PBC subjects. The GO terms belonging to BPs are listed, and for each one the significance
level (p-adjust < 0.05) and the gene list were reported.

ID Description p-Adjust Gene ID

GO:0046394 carboxylic acid biosynthetic process 0.0387 GSTP1/LTA4H/AKR1A1/CBR1/FASN/ACLY

GO:0006690 eicosanoid metabolic process 0.0377 CES2/GSTP1/LTA4H/CBR1

GO:0007015 actin filament organization 0.0390 ARPC5/WDR1/RNH1/LCP1/CFL1/CAPG

GO:0032956 regulation of actin cytoskeleton
organization 0.0390 SMIM22/ARPC5/WDR1/RNH1/CAPG

GO:0006633 fatty acid biosynthetic process 0.0390 GSTP1/CBR1/FASN/ACLY

GO:0007004 telomere maintenance via telomerase 0.0390 HSP90AA1/HSP90AB1/CCT3

GO:2000379 positive regulation of reactive oxygen
species metabolic process 0.0390 GSTP1/CBR1/RAB27A

GO:2000573 positive regulation of DNA
biosynthetic process 0.0390 HSP90AA1/HSP90AB1/CCT3

GO:0019362 pyridine nucleotide metabolic process 0.0390 IDH1/NAMPT/PGD

GO:0072350 tricarboxylic acid metabolic process 0.0390 IDH1/ACLY

GO:1902947 regulation of tau-protein kinase activity 0.0390 HSP90AA1/HSP90AB1

GO:1904814 regulation of protein localization to
chromosome, telomeric region 0.0390 MACROH2A1/CCT3

GO:0051014 actin filament severing 0.0390 CFL1/CAPG

GO:0009313 oligosaccharide catabolic process 0.0390 GM2A/PGD

GO:1990182 exosomal secretion 0.0390 RAB7A/RAB27A

GO:0030220 platelet formation 0.0406 WDR1/PTPN6

GO:0051767 nitric-oxide synthase biosynthetic
process 0.0406 GSTP1/NAMPT

GO:0051131 chaperone-mediated protein complex
assembly 0.0414 HSP90AA1/HSP90AB1

GO:0006909 phagocytosis 0.0498 RAB7A/RAB27A/MFGE8/NCF4

GO:0072593 reactive oxygen species metabolic
process 0.0498 GSTP1/CBR1/RAB27A/NCF4

GO:0070199 establishment of protein localization to
chromosome 0.0498 MACROH2A1/CCT3

Table 4. GO enrichment analysis of the DEPs identified in PSC patients compared to healthy control,
which showed no significant change compared to the PBC group. The GO terms belonging to BPs are
listed, and for each one the significance level (p-adjust < 0.05) and the gene list were reported.

ID Description p-Adjust Gene ID

GO:0006909 phagocytosis 0.0028 DYSF/AHSG/ANXA3/CYBA/NCF2/ICAM3/ANXA11/
PTPRJ/PYCARD

GO:0072593 reactive oxygen species metabolic process 0.0028 HBD/HBB/G6PD/CYBA/ARF4/NCF2/PRDX5/CD177/
DHRS4

GO:0007596 blood coagulation 0.0308 KNG1/HBB/SERPING1/SAA1/GNA13/FERMT3/TLN1

GO:0006098 pentose-phosphate shunt 0.0308 H6PD/G6PD/PGAM1

GO:0006740 NADPH regeneration 0.0308 H6PD/G6PD/PGAM1
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Table 4. Cont.

ID Description p-Adjust Gene ID

GO:0052547 regulation of peptidase activity 0.0329 KNG1/AHSG/SERPING1/MMP9/CD44/PRDX5/PSME1/
ITIH4/PYCARD

GO:0002526 acute inflammatory response 0.0329 IGHG1/AHSG/FCGR3A/SAA1/ITIH4

GO:1990748 cellular detoxification 0.0329 AKR1B10/HBD/HBB/PRDX6/PRDX5

GO:0042060 wound healing 0.0347 KNG1/HBB/SERPING1/ANXA6/SAA1/CD44/GNA13/
FERMT3/TLN1

GO:0051156 glucose 6-phosphate metabolic process 0.0347 H6PD/G6PD/PGAM1

GO:0042744 hydrogen peroxide catabolic process 0.0383 HBD/HBB/PRDX5

GO:0050878 regulation of body fluid levels 0.0385 KNG1/HBB/SERPING1/SAA1/CYBA/GNA13/FERMT3/
TLN1

GO:0006958 complement activation, classical pathway 0.0428 SERPING1/CFI/C7

GO:0002437 inflammatory response to antigenic stimulus 0.0441 IGHG1/FCGR3A/IL1RN/IL36A

GO:0030212 hyaluronan metabolic process 0.0471 CD44/ITIH4/HAS1Molecules 2024, 29, x FOR PEER REVIEW  8  of  17 
 

 

Figure 3. Dot plot showing enrichment of Gene Ontology Biological Processes (PBs) for the DEPs
identified in PSC patients compared to both healthy control and PBC subjects.
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and the involved proteins are reported. * Terms not statistically significant but biologically relevant.

3. Discussion

In this explorative study, we have analyzed and compared the saliva proteomic pro-
files of PBC patients with those obtained in our previous study on PSC subjects and healthy
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controls [29]. Comparative analysis showed 142 DEPs in the PSC group compared to
healthy subjects, and among them, 102 proteins did not have significantly different lev-
els with respect to the PBC group (Table 2), suggesting that these proteins are not good
discriminators between the two cholestatic diseases. Interestingly, 40 of the 142 proteins
might be more indicative of PSC, having shown significant deregulation compared to
patients with PBC (Table 1). For these proteins we performed a GO analysis highlighting
7 proteins as significantly related to the actin filaments organization (Table 3; Figure 3).
Among them, the most up-regulated protein was small integral membrane protein 22,
with a log2FC = 3.589. Although no literature data reported information on its involve-
ment in cholestatic diseases or related manifestations, Polycarpou-Schwarz and colleagues
demonstrated that small integral membrane protein 22 is involved in actin cytoskeleton
organization in the MCF7 breast cancer cell line, affecting cell proliferation, cell migra-
tion, and cell cycle progression [30]. Cofilin-1 is an actin-binding protein that regulates
the cytoskeleton dynamics in hepatic stellate cells (HSCs), triggering the deposition of
type I collagen during liver fibrosis [31]. Although the up-regulation of cofilin-1 was
only detected in another salivary proteomics study on patients with PBC [27], two recent
studies demonstrated the increase in cofilin-1 expression in hepatocellular carcinoma tis-
sues [32,33]. Macrophage-capping protein is a calcium-sensitive member of the gelsolin
family and is involved in the remodeling of the cytoskeleton actin filaments [34]. No clinical
study has shown its deregulation in biological fluids or tissues from patients with PSC or
PBC; however, the association of increased macrophage-capping protein expression with
vascular invasion in patients with cholangiocarcinoma [35] and hepatocellular carcinoma
tissues [36] was recently demonstrated. Another deregulated salivary protein related to
cytoskeleton shaping was actin-related protein 2/3 complex subunit 5 that modulates the
actin polymerization after the stimulation by nucleation-promoting factor [37]. Huang
and colleagues highlighted higher actin-related protein 2/3 complex subunit 5 expression
in hepatocellular carcinoma tissues and cells when compared with healthy liver tissues
or normal liver cells [38]. Although our results are preliminary and supporting literature
data are scarce, they seem to suggest the proteins discussed above as possible salivary
indicators of liver fibrosis caused by actin cytoskeleton remodeling in HSCs. Furthermore,
their up-regulation in hepatocellular carcinoma and cholangiocarcinoma would suggest
that these proteins could be indicative of the progression of cholestatic disease towards
a cancerous form. Among the proteins linked to cytoskeletal shaping, plastin-2 is the
one with the lowest degree of deregulation in PSC patients compared to the PBC group
(log2FC = 0.716). Tit-Oon and colleagues analyzed the secretoma of cholangiocarcinoma
cells cultured in 3D, identifying plastin-2 as a secreted protein; protein not found in mixed
hepatocarcinoma-cholangiocarcinoma cell culture [39]. Joshi and colleagues have recently
demonstrated the connection between plastin-2 and the NLRP3 inflammasome activation
in macrophages using a mouse model of lung fibrosis [40]. It is well known that increased
NLRP3 inflammasome expression was a key event in HSC activation and in cholangio-
cytes switch to a reactive phenotype, contributing to the development of liver and biliary
fibrosis [41–43]. Consistent results were observed in liver sections of patients affected by
PSC [41] and in a Mdr2-knockout mouse model [44]. These findings are very interesting
as they would suggest a more pronounced relationship of plastin-2 with the biliary tissue
rather than the liver parenchyma, corroborating its salivary up-regulation as related to
biliary fibrosis in PSC, in which macrophages play a major role [45]. Considering the
secretion of plastin-2 by cholangiocarcinoma cells, our results could suggest this protein
as a salivary indicator of a probable evolution towards cancer. Although biliverdin reduc-
tase A did not emerge as being significantly associated with any biological process in our
GO analysis, we believe it may have considerable clinical relevance. Very little is known
about the role of biliverdin reductase A in the pathogenesis and progression of cholestatic
diseases; however, according to our results, recent studies highlighted its up-regulation in
serum samples from PSC patients [46]. Biliverdin reductase A is an enzyme that converts
biliverdin into bilirubin, which possesses cytoprotective properties in response to oxidative
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stress and regulates the innate immune responses [47–49]. Recently, Weaver and colleagues
suggested that biliverdin reductase A may prevent HSCs fibrogenesis by antagonizing
the toll-like receptor 4 (TLR4) signaling pathway [50]. Indeed, TLR4 signaling plays a
key role in activated HSCs, which represent the major fibrogenic cell type during liver
fibrosis [43,51]. In addition, increased biliverdin reductase A expression was detected on
the plasma membrane of macrophages after lipopolysaccharide treatment, used to initiate
an inflammatory response [52]. Collectively, this evidence would attribute to biliverdin
reductase A a key role in the activation of HSCs by actively contributing to the restraint
of the fibrotic process. In this perspective, the increased salivary expression of biliverdin
reductase A in patients with PSC could be indicative of its cytoprotective activity against
liver fibrosis. In this study, we demonstrated that PSC significantly alters the salivary
proteome compared to PBC and healthy controls, identifying multiple cytoskeleton-related
proteins that might represent a specific signature of the PSC. To corroborate our results,
all the 40 DEPs were subjected to PCA, and the reduced dataset was used to investigate
if these proteins were more specific for PSC status (Figure 2). Our analysis had shown
that the expression of four proteins (biliverdin reductase A, macrophage-capping protein,
heat shock protein HSP 90-beta, and cofilin-1) out of the 40 salivary DEPs might be more
indicative of PSC than the PBC group. These data would seem to support the results of
the pathway analysis (Figure 4) that showed a greater involvement of the innate immune
system in PSC than in PBC subjects. Indeed, cofilin, macrophage-capping protein, and
HSP90 are proteins whose role in modulating the innate immune response by macrophages
is well documented [53–56]. In addition, previous studies showed a higher number of
macrophages in liver biopsies from patients with PSC than in those from PBC or other
liver diseases [57,58]. This phenomenon could underlie the greater involvement of innate
immune system responses in patients with PSC than in the other groups analyzed in this
study, suggesting that the salivary proteins macrophage-capping protein, cofilin-1, and
heat shock protein HSP 90-beta could be indicators of the macrophage involvement in
the pathophysiology of PSC. Since some of the proteins discussed (e.g., actin-related pro-
tein 2/3 complex subunit 5, cofilin-1,plastin-2 and macrophage-capping protein) go into
post-translational modifications (PMTs), such as phosphorylation and glycosylation, that
regulate their activity, distribution, and stability [59–64], further MS-based PTM analyses
are needed to clarify the role that might have in the onset and progression of PSC [65,66].
Certainly, the most impactful limitation of this study is related to the small patient cohort
that should be addressed in larger population studies to confirm the peculiar phenomena
observed. However, this preliminary exploratory study provides important information
for a deeper understanding of the pathophysiology of PSC, demonstrating that saliva is
a suitable biological sample for obtaining proteomic fingerprints useful in the search for
biomarkers that can effectively discriminate between the two cholestatic diseases.

4. Materials and Methods
4.1. Reagents

All the reagents and materials used for sample collection, processing and analysis
in liquid chromatography–tandem mass spectrometry (LC-MS/MS) were detailed in our
previous article [67].

4.2. Patient Characteristics

Six female patients with confirmed PBC were subsequently recruited at the University
Hospital of Pisa (Hepatology Unit and Gastroenterology Unit), according to the established
inclusion criteria. The patient group was in a range of 52–70 years (median age of 60.5
years). A saliva sample was obtained from each subject as previously described [29,68]. At
the time of saliva collection, patients showed a median value for alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and total bilirubin of 17.00 U/L (10–48), 18.00 U/L
(18–42), and 0.36 mg/dL (0.22–0.49), respectively. The median GGT, ALP, albumin, and
gamma globulin values were 79 U/L (12–161), 123 U/L (84–350), 4.35 g/L (3.8–5.0), and
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19.7% (13.9–24.6), respectively. A total of 2 patients out of 6 were positive for anti-nuclear
antibodies (ANA) and anti-mitochondrial antibodies (AMA). Among them, three patients
were positive for ANA and P-ANCA, and just one patient was positive for anti-smooth
muscle antibodies (ASMA). A total of 6 males and 4 females were enrolled for both the PSC
group and healthy individuals, aged between 18 and 70 years (median age of 49 years) and
27–65 years (median age of 41 years), respectively.

The study obtained the approval of the Comitato Etico Area Vasta Nord Ovest (Protocol
code 57532, 30 October 2019, Pisa, Italy). All the patients signed an informed consent to
participate in the study.

4.3. Saliva Collection, Processing, and LC-MS/MS Analysis

Spontaneous saliva from each PBC patient was collected and enriched in extracellular
vesicles by applying a differential centrifugation isolation protocol; then the proteins were
extracted and quantified according to our previous papers [29,68]. A total of 100 µg of
proteins for each sample were subsequently reduced, alkylated, and digested. After that,
the peptide mixtures were centrifuged, desalted, resuspended in CH3CN/0.1% HCOOH
(ratio 5/95) to achieve a final peptide concentration of 2 µg/µL, and analyzed by LC-
MS/MS as previously reported [29]. Sample analysis was performed according to our
previous paper [29] using a micro-HPLC (Eksigent Ekspert microLC 200, AB Sciex, Concord,
ON, Canada) coupled with a Triple TOF 5600 mass spectrometer (AB Sciex, Concord, ON,
Canada). The protein quantification was achieved through Sequential Window Acquisition
of all Theoretical fragment ion Mass Spectra (SWATH-MS) methodology, as previously
reported [29].

4.4. Data Processing and Statistical Analysis

SWATH raw files were processed using the free universal software DIA-NN (version
1.8) as previously described [29], quantifying 733 proteins. This dataset was compared
with that obtained from our previous salivary proteomic analysis on patients with PSC and
healthy controls [29]. For each protein, we compared the fold change (FC) calculated as
the ratio between the mean of abundance in PSC patients and the PBC group with those
obtained as the ratio between the mean of abundance in PSC patients and the healthy
control group. Proteins were considered significantly differentially expressed (DEPs)
when FC ≤ 1/1.5 or FC ≥ 1.5, and p-value < 0.05 (determined using the non-parametric
Wilcoxon test).

The DEPs were also subjected to Gene Ontology (GO) over-representation analysis,
which was performed using the clusterProfiler package in R (version 4.8.3) and the OrgDb
annotation database, Genome-wide annotation for Human (version 3.17.0). Significant
GO terms were identified using a p-value threshold of 0.05, with False Discovery Rate
(FDR) correction applied via the Benjamini–Hochberg method. The pathway analysis
was performed using the g:Profiler tool [69]. Principal component analysis (PCA) was
performed using the FactoMineR package implemented in R (version 2.11). To highlight
the variables that most contributed to each dimension, the corrplot package (version 0.92)
was used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29235783/s1, Table S1: List of down and up-regulated
proteins identified in PSC patients compared to healthy control which showed no significant change
compared to the PBC group. The cutoff log2FC ≤ 0.58 or log2FC ≥ 0.58 FC, and a Mann–Whitney
p-value < 0.05 were applied; Figure S1: Volcano plot of the significantly DEPs in PSC patients
compared to both healthy and PBC subjects. The red dots represent the 38 up-regulated proteins,
blue dots mean the 2 down-regulated proteins, and gray ones are non-significantly altered proteins.
The x-axis represents the protein difference reported as log2FC, and the y-axis corresponds to the
−log10(p-value).

https://www.mdpi.com/article/10.3390/molecules29235783/s1
https://www.mdpi.com/article/10.3390/molecules29235783/s1
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